
Offloading Dependent Tasks in Mobile Edge
Computing with Service Caching

Gongming Zhao1;3 Hongli Xu∗1;3 Yangming Zhao2 Chunming Qiao2 Liusheng Huang1;3
1School of Computer Science and Technology, University of Science and Technology of China

2Department of Computer Science and Engineering, University at Buffalo, The State University of New York
3Suzhou Institute for Advanced Study, University of Science and Technology of China

Abstract—In Mobile Edge Computing (MEC), many tasks
require specific service support for execution and in addi-
tion, have a dependent order of execution among the tasks.
However, previous works often ignore the impact of having
limited services cached at the edge nodes on (dependent) task
offloading, thus may lead to an infeasible offloading decision
or a longer completion time. To bridge the gap, this paper
studies how to efficiently offload dependent tasks to edge nodes
with limited (and predetermined) service caching. We formally
define the problem of offloading dependent tasks with service
caching (ODT-SC), and prove that there exists no algorithm
with constant approximation for this hard problem. Then, we
design an efficient convex programming based algorithm (CP)
to solve this problem. Moreover, we study a special case with
a homogeneous MEC and propose a favorite successor based
algorithm (FS) to solve this special case with a competitive ratio
of O(1). Extensive simulation results using Google data traces
show that our proposed algorithms can significantly reduce
applications’ completion time by about 27-51% compared with
other alternatives.
Index Terms—Mobile Edge Computing, Task Offloading,

Service Caching, Dependency, Approximation.

I. INTRODUCTION

The Internet of Things and widespread use of mo-
bile devices are driving the development of many delay-
sensitive and resource-intensive applications, such as vir-
tual/augmented reality, face recognition and data stream
processing [1] [2] [3]. Currently, these applications are
processed or performed on either mobile devices or on a
cloud platform. On one hand, mobile device has too little
computational resource for many applications [4]. On the
other hand, running resource-intensive applications on a
cloud platform often requires massive data be transferred
between mobile devices and remote servers in the cloud,
leading to unpredictable communication delay [5] [6]. As
a result, Mobile Edge Computing (MEC) has emerged as a
promising solution to overcome the above disadvantages [1]
[7] [8] [9] [10].
However, there still exist many challenges in MEC.
We take the face recognition application as an example.
Basically, a face recognition application can be divided
into five dependent tasks: object acquisition, face detection,
preprocessing, feature extraction and classification [11].
When these tasks are offloaded to edge nodes, we need to
take the following factors into considerations: 1) Service
caching. Task execution may require the support of specific
services. That means tasks can only be offloaded to edge

nodes configured with corresponding services. For example,
tasks “feature extraction” can only be offloaded to the edge
nodes configured with trained machine learning model. 2)
Dependency. There may be dependencies between tasks. For
example, the output of task “feature extraction” is the input
of task “classification”. Thus, task “classification” can start
only if task “feature extraction” has completed.

Actually, both service caching and dependency will im-
pact the performance of task offloading. If we do not
consider service caching or dependency when offloading
these applications, the applications may not be performed
successfully [2] [12]. Existing works on service caching
often focus on the problem of joint optimization of service
placement and task offloading in MEC [2] [4] [13] [14]. Xu
et al. [2] formulated an online and decentralized algorithm,
with the objective of computation latency minimization, to
jointly optimize service caching and task offloading. Ouyang
et al. [4] studied the dynamic service placement problem
and proposed a Thompson-sampling based online learning
algorithm to make adaptive service placement decisions. In
fact, service placement/update may incur higher operation
cost than task execution, and hurt the system stability [13].
For example, object database and trained machine learning
models require a nontrivial amount of data and are time-
consuming if we migrate these services [13]. Thus, service
placement often occurs at long-term time scale. If we jointly
update the service placement and task offloading at long-
term time scale (e.g., [4] [14]), due to task dynamics and
uncertainty [15] [16], the offloading solutions may lead
to computation congestion on some edge nodes. Different
from the previous works, we assume that services have
been placed/cached on edge nodes according to the existing
methods such as [4] [14]. We will consider the impact of
service caching on the applications’ performance (e.g., the
completion time) of dynamic task offloading.

Due to the limited memory resource, only a subset of
services can be cached on an edge node [1]. The status
of service caching (i.e., where the services are hosted)
will influence the decisions of task offloading. We give
an example as shown in Fig. 1. Three tasks need to be
offloaded to two edge nodes. Task 1 must finish and send
corresponding data to task 2 before task 2 can start. Task 3 is
independent of tasks 1 and 2. For simplicity, the processing
delay for any task on any node edge is set as 1 and the

1997
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

2

1 2

3

 Task Set

Egde
Node1

Egde
Node2

1 2

3

Egde
Node1

Egde
Node2

1

3 2

Optimal offloading
without considering

service caching

Optimal offloading if edge node 1
configured services for task 1 and edge

node 2 configured services for task 2

Fig. 1: A Motivation example. We assume three tasks
need to be offloaded as illustrated in the top plot. The
optimal offloading solution is shown in the left plot without
considering service caching. The right plot is the offloading
solution if only edge node 1 caches services for task 1 and
only edge node 2 caches services for task 2.

communication delay is set as 0.5 for data transmission from
task 1 to task 2 if these two tasks are offloaded to different
edge nodes. If we do not consider the constraint of service
caching, the optimal offloading solution is shown in the left
plot of Fig. 1 and the makespan is 2. However, if only edge
node 1 caches services for task 1 and only edge node 2
caches services for task 2, the offloading solution is shown in
the right plot of Fig. 1 and the makespan is 2.5. In this case,
the offloading strategy of the left plot is infeasible/inefficient
due to lack of the services support (service migration is
time-consuming). Thus, this paper focuses on offloading
dependent tasks with service caching.
We should note that the problem of offloading depen-
dent tasks in MEC is complicated and only some works
considered the dependency constraints in MEC, such as
[12] [17] [18]. Hermes et al. [17] designed a polynomial
time approximation algorithm to minimize the makespan
under resource constraints when offloading dependent tasks.
Fan et al. [18] formulated the dependent task offloading
problem to minimize the overall cost of all applications
under each application’s completion time constraints. Due
to the complexity of offloading dependent tasks, only a few
works consider the service caching constraints at the same
time. The most related work is GenDoc [19], which jointly
considered the problem of dependent task offloading and
service caching placement with the objective of application
completion time minimization. However, GenDoc does not
consider the computing resource constraints when offloading
tasks to edge nodes. In fact, mobile edge nodes are resource-
sensitive and GenDoc may cause irrational use of limited
computing resources. The main contributions of this paper
are as follows:
1) We formally define the problem of offloading depen-
dent tasks in MEC while considering service caching
(ODT-SC), and prove its NP-hardness. We also analyze

that the ODT-SC problem cannot be solved in polyno-
mial time with a constant approximation algorithm.

2) We present a convex programming based algorithm,
called CP, for the ODT-SC problem.

3) Moreover, we design a favorite successor based algo-
rithm, called FS, for the special case (i.e., homogeneous
edge nodes), and prove that FS can achieve an approx-
imation ratio of O(1).

4) We conduct extensive simulations using real-world
applications (from [20]) and data traces (from [21])
to show that CP and FS help reduce applications’
completion time by about 27-51% compared with other
alternatives.
The rest of this paper is organized as follows. Section
II defines the problem of offloading dependent tasks in
MEC while considering service caching and proves that
there exists no approximation algorithm with a constant
factor for this hard problem. In Section III, we propose an
efficient convex programming based algorithm to solve this
problem, called CP. Section IV focuses on the special case
of homogeneous edge nodes and proposes an approximation
algorithm with bounded approximation ratio. The simulation
results are presented in Section V. We conclude the paper
in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION
In this section, we first introduce the system model,
including task dependency model and network model. We
then formally define the dependent task offloading with
service caching (ODT-SC) problem, and prove that there
exists no constant approximation algorithm for ODT-SC.

A. System Model

Task Dependency Model:We assume that one or several
application(s) (e.g., face recognition, virtual reality) need
to be executed at some point in time. These application(s)
can be divided into many tasks and each task can only be
executed by one edge node. Note that, task execution may
require the support of various resources (e.g., storage, CPU,
network I/O) and corresponding services (e.g., machine
learning mode) [22].
We use V = {v1; v2; :::; vn} to denote the set of tasks,
where n = |V | is the number of tasks. Some of these tasks
may exist dependency. Given the precedence constraints
among these tasks, we can use a directed acyclic graph
(DAG) G = (V;E) to denote the dependency between
tasks, where V denotes the task set and E is set of edges
representing the precedence constraints. A sink node of the
DAG is a node such that no edge emerges out of it. More
specifically, there is an edge from task v to task v′ if and
only if there exists data transmission from task v to task v′

(i.e., task v′ can start only if task v is completed and the
corresponding data is transmitted to task v′). We use avv′
to denote the amount of data that required to be transferred
from task v to task v′.
Network Model: We consider an MEC network contain-
ing a set M = {m1;m2; :::;ml} of edge nodes, where

1998
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

3

l = |M | denotes the number of edge nodes. These edge
nodes are interconnect with each other by kinds of network
connections (e.g., local-area network [23]). The communica-
tion delay per unit data from edge nodes m to m′ is denoted
by cmm′ (cmm′ = 0 ifm = m′). Each edge node has cached
a subset of services. Let Mv represent the set of edge nodes
that meet the service constraints for task v ∈ V . That means
task v ∈ V can only be executed by an edge node in Mv.
Moreover, each edge node has limited resources (e.g., CPU
cycles, storage, computing, I/O [17] [24] [25]). For the sake
of description, we only consider the resource constraints
of CPU cycles in this paper. We assume each edge node
m ∈ M only assigns C(m) CPU cycles to execute these
tasks due to resource constraints, and it will consume tvm
execution time and rvm CPU cycles per second if task v is
offloaded to edge node m. Note that, it is easy to extend to
other resources constraints [17] [25].

B. Problem Definition

Given a set of available edge nodes and a set of appli-
cations (each application consisting of multiple dependent
tasks), we define the problem of offloading these dependent
tasks with service caching (ODT-SC). We first construct
a DAG according to the dependencies among tasks, as
described in Section II-A. We then use a binary variable
zmv to denote whether task v ∈ V is offloaded to edge node
m ∈ M or not. A feasible offloading solution is defined as
a start time tv and an edge node mv to execute each task
v ∈ V such that:
1) All Tasks should be Offloaded: Each task should be
offloaded to exactly one edge node. That means, for
each task v ∈ V ,

∑
m∈M z

m
v = 1.

2) Service Constraint: Task v ∈ V can only be offloaded
to the edge node configured with corresponding re-
quired services, i.e., the edge node in Mv . That means,∑
m∈Mv z

m
v = 1; ∀v ∈ V .

3) Dependency Constraint: For any edge < v; v′ >∈ E,
task v′ can start iff all precedent tasks are complet-
ed and the required data is transferred to the edge
node mv′ . That is, for each < v; v′ >∈ E, tv +∑
m∈M z

m
v tvm +

∑
m∈M

∑
m′∈M cmm′avv′z

m
v z
m′

v′ ≤
tv′ .

4) Execute Tasks in Sequence: For any pair of tasks v; v′ ∈
V , if both tasks are offloaded to the same edge node
m (i.e., mv = mv′ = m), then tv + tvm ≤ tv′ or
tv′ + tv′m ≤ tv. That means, each edge node can only
perform one task at a time instance and tasks cannot
be interrupted during the execution [12].

5) Processing Resource Constraints: The processing re-
source constraint should be satisfied for every edge
node, which can be formulated as

∑
v∈V z

m
v tvmrvm ≤

C(m);∀m ∈M .
The makespan of these offloaded tasks is denoted by T =
max{tv+

∑
m∈M z

m
v tvm; v ∈ V }. We aim to find a feasible

offloading solution with a minimum makespan. Thus, the
ODT-SC problem can be formulated as follows:

min T

s:t:






∑
m∈M z

m
v = 1; ∀v ∈ V∑

m∈Mv z
m
v = 1; ∀v ∈ V

tv +
∑
m∈M z

m
v tvm+∑

m∈M
∑
m′∈M cmm′avv′z

m
v z
m′

v′ ≤ tv′ ; ∀ < v; v′ >∈ E
tv−tv′
χ < xvv′ ; ∀v; v′ ∈ V

χ(3 − zmv − zmv′ − xvv′)+
tv − tv′ ≥ tv′m; ∀v; v′ ∈ V;m ∈M∑
v∈V z

m
v tvmrvm ≤ C(m); ∀m ∈M

tv +
∑
m∈M z

m
v tvm ≤ T; ∀v ∈ V

zmv ∈ {0; 1}; ∀m ∈M;v ∈ V
tv ≥ 0; ∀v ∈ V
xvv′ ∈ {0; 1}; ∀v; v′ ∈ V

(1)
The first set of equations represents that each task should
be offloaded on exactly one edge node. The second set of
equations denotes the service constraint. The third set of
inequalities represents the dependency constraint. We let χ
to represent a large number and xvv′ ∈ {0; 1}; ∀v; v′ ∈ V .
The fourth and fifth sets of inequalities denote the feature
of edge node executing tasks in sequence. More specifically,
for any two tasks v and v′, there are two cases: 1) Tasks
v and v′ are both offloaded to edge node m and without
loss of generality, we assume tv ≥ tv′ . In this case, xvv′ ,
zmv and z

m
v′ are all equal to 1. Thus, the fifth inequality

can be simplified to tv − tv′ ≥ tv′m, which guarantees that
task v cannot start before task v′ is finished. 2) Tasks v and
v′ are offloaded to different edge nodes, which means zmv
and zmv′ cannot be equal to 1 at the same time. Under this
case, 3− zmv − zmv′ − xvv′ can be larger than 0 and the fifth
inequality holds regardless of the values of tv and tv′ (i.e.,
there is no constraint between tv and tv′). Thus, the fourth
and fifth sets of inequalities can guarantee that all tasks
on the same edge node will be executed in sequence. The
sixth set of inequalities represents the processing resource
constraints. Our objective is to minimize the maekspan, i.e.,
min T .
Theorem 1: ODT-SC is one of the most difficult problems
in NP-hard class: even finding a k-approximation algorithm
(k is a constant) to solve ODT-SC is NP-hard.
Proof: On the one hand, we show that Travelling

Salesman Problem (TSP) [26] is a special case of the ODT-
SC problem. Due to space limit, we omit the detailed
proof here. On the other hand, previous works have proved
that finding a k-approximation algorithm for TSP is NP-
Hard [26] [27]. Thus we can conclude that finding a k-
approximation algorithm (k is a constant) to solve ODT-SC
is NP-hard.
The above analysis shows the hardness of the ODT-SC
problem. Thus, in this paper, we first design algorithms to
solve the general ODT-SC problem in Section III and then
design an approximation algorithm with bounded approxi-
mation factor for the homogenous scenario in Section IV.

1999
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

4

III. CONVEX PROGRAMMING BASED ALGORITHM FOR
ODT-SC

In this section, we present a convex programming based
algorithm for ODT-SC, called CP. The workflow of CP is
shown in Fig. 2. Specifically, CP offloads dependent tasks
through four major steps: 1) Relaxing the ODT-SC prob-
lem to construct a convex optimization program. 2) Using
progressive rounding method to obtain feasible solutions
for this relaxed problem. 3) Computing weight for each
task according to the feasible solutions. 4) Offloading tasks
following the weight values.

Relaxing the
ODT-SC Problem

Offloading Tasks
with Earliest
Finish Time

Construct a
Convex Program Solving this

Convex Program

Computing Weight
for Each Task

Sort Tasks in Descending
Order of Weights

Obtain
Feasible
Solutions

Fig. 2: Workflow of the CP algorithm. CP can be divided
into four steps: relaxing the ODT-SC problem to construct
convex program, using progressive rounding method to solve
this program, computing weight for each task according to
the solutions and offloading tasks according to the weights.

Relaxing the ODT-SC Problem. Eq. (1) is non-convex
due to the third set of inequations, which increases the
difficulty of solving this problem. To eliminate the non-
convex in Eq. (1), we leverage the definition of binary
variable zmv (∀v ∈ V;m ∈ M) to give the following
modification:

tv +
�

m∈M
zmv tvm +

�

m∈M

�

m′∈M
cmm′avv′z

m
v z
m′

v′ = tv+

�

m∈M
zmv tvm +

�

m∈M

�

m′∈M
cmm′avv′ max[z

m
v + z

m′

v′ − 1; 0]

(2)
If we then relax the integer constraints of variables zmv
(∀v ∈ V;m ∈ M) and xvv′ (∀v; v′ ∈ V) to be continuous
variables, we can solve this problem with a convex pro-
gramming solver such as CPLEX [28]. However, we find
the relaxation results are not good due to the large number
χ in the fourth and fifth sets of inequalities. We can not
get satisfactory performance if we offload tasks according
to these results, which has been testified in Section V.
Thus, we present another method to solve this problem.
We assume that edge nodes can perform tasks in parallel
and each task v ∈ V is splittable and can be executed on
several edge nodes. In this way, we derive the following
convex optimization problem:

min T

s:t:






∑
m∈M

zmv = 1; ∀v ∈ V
∑
m∈Mv

zmv = 1; ∀v ∈ V

tv +
∑
m∈M

zmv tvm +
∑
m∈M

∑
m′∈M

cmm′

avv′ ·max[zmv + zm
′

v′ − 1; 0] ≤ tv′ ; ∀ < v; v′ >∈ E∑
v∈V
zvmtvmrvm ≤ C(m); ∀m ∈M

tv +
∑
m∈M

zmv tvm ≤ T; ∀v ∈ V

zmv ∈ [0; 1]; ∀m ∈M;v ∈ V
tv ≥ 0; ∀v ∈ V

(3)
Since Eq. (3) is a convex optimization problem, we can
solve it in polynomial time with a convex programming
solvers such as CPLEX [28]. Assume that the optimal
solutions for Eq. (3) are 	zmv and 	tv, ∀v ∈ V;m ∈ M , and
the optimal objective value is 	T .
Progressive Rounding. This phase obtains integer solu-
tions �zmv for each v ∈ V and m ∈M using the progressive
rounding method [29]. More specifically, in each iteration,
we first solve Eq. (3) and obtain fractional solutions 	zmv .
Then we choose part of tasks v ∈ V with large value of
max{	zmv ;m ∈ M} and use randomized rounding method
[30] to derive an integer solution �zmv for these chosen
tasks. We then fix the integer solution in �zmv (i.e., fix these
rounding solutions as known quantities) and solve Eq. (3)
again. In this way, we can obtain a feasible solutions �zmv
after several iterations. That means, we get the offloaded
edge node mv for each task v ∈ V (i.e., �zmvv = 1) while
assuming edge node can parallelly execute tasks in this step.
Computing Weights. This step computes the weight for
each task. More specifically, we first insert an end task at
the bottom of the DAG and connect this task with all sink
nodes of the DAG. We then denote the weight of each link
< v; v′ >∈ E as w < v; v′ >= tvmv + cmvmv′avv′ and the
weights of links connected with the end task are set as 0.
In this way, we can compute the maximum distance from
each task v ∈ V to the end task, denoted by W (v). It can
be easily shown that the descending order of their distance
to the end task preserves the dependency constraints and a
larger value means potential longer execution time. Thus,
we define a list Π and sort all tasks in descending order of
their distance to the end task.
Offloading Tasks.We offload tasks following the order of
list Π in this step. We first define some concepts/variables
to facilitate the description of this part. We use Pred(v)
and Succ(v) to denote the set of immediate predecessor
and successor tasks of task v ∈ V , respectively, which can
be obtained according to the DAG. Let R(m) denote the
rest processing resources for edge node m ∈M , initialized
as C(m). We use Mv(R) to denote the set of edge nodes
that satisfy both processing resource and service constraints
for task v ∈ V , formally Mv(R) = Mv

∩
{m |R(m) ≥

rvmtvm; m ∈ M}. Let T (v;m) represent the first date at
which there is a larger idle time slot on edge node m ∈M

2000
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

5

than tvm, initialized as 0. Note that, the idle time slot may be
between two already-offloaded tasks on edge nodem or after
the time all tasks offloaded on edge node m are completed.
Moreover, for each task v ∈ V , the actual offloaded edge
node, the actual start time and the actual finish time are
denoted by mv, t̄v and f̄v, respectively, both are initialized
to 0. With these definitions, if we offload task v on edge
node m, we can calculate the earliest start time EST (v;m)
and earliest finish time EFT (v;m):
EST (v;m) = max(T (v;m); max

v′∈Pred(v)
(f̄v′ + cmv′mav′v))

(4)
EFT (v;m) = EST (v;m) + tvm (5)

In each iteration, we choose the first task v left in
list Π for offloading. We first compute the earliest finish
time EFT (v;m) for each edge node m ∈ Mv(R) with
Eq. (5) and then offload task v on edge node m with
minm∈Mv(R)EFT (v;m). After task v is offloaded, we
record the actual offloaded edge node mv. Besides, we
update the actual start time t̄v, the actual finish time f̄v
and the rest processing resources R(mv) with Eqs. (6), (7)
and (8), respectively.

t̄v = EST (v;mv) (6)
f̄v = t̄v + tvmv (7)

R(mv) = R(mv)− tvmrvm (8)
We repeat these operations until all tasks have been
offloaded. The CP algorithm is formally described in Al-
gorithm 1.

IV. FAVORITE SUCCESSOR BASED ALGORITHM FOR
HOMOGENEOUS SCENARIO

Section III has proposed the CP algorithm to solve the
general ODT-SC problem (i.e., heterogeneous scenario). In
practice, many applications will be executed in the homoge-
neous scenario [31] [32] [33]. In this scenario, we assume
that all edge nodes have the same processing speed (e.g., the
same CPU capacity) and all links have the same transmission
rate. In other words, we use ev to denote the execution time
tvm if task v ∈ V is offloaded on edge node m ∈ M (i.e.,
ev = tvm) and use c to denote the communication delay per
unit date cmm′ for each pair of edge nodes m;m′ ∈M (i.e.,
c = cmm′). Besides, considering the processing capacity
constraints of mobile edge nodes, we assume that the
execution delay is not less than the communication delay
for any task [32]. That means, for any task v ∈ V with a
successor v′ ∈ Succ(v), ev ≥ c · avv′ . Moreover, we do not
consider the resource constraint C(m) for these tasks. For
this special case, we present an approximate algorithm with
bounded approximation factor.

A. Favorite Successor based Algorithm for Homogeneous
Scenario

We first give the definitions of favorite successor and
predecessor for this problem.
Definition 1 (Favorite Successor [34]): For any task v ∈
V , if task v′ ∈ Succ(v) satisfies t̄v′ < t̄v + ev + cavv′ , then
task v′ is called the favorite successor for task v.

Algorithm 1 CP: Convex Programming based Algorithm
for ODT-SC
1: Step 1: Relaxing ODT-SC Problem
2: Construct a convex optimization program in Eq. (3)
3: Obtain the optimal solution 	zmv , 	tv
4: Step 2: Progressive Rounding
5: Derive an integer solution �zmv by progressive rounding
for each v ∈ V , m ∈M

6: Step 3: Computing Weights
7: Compute W (v) for each task v ∈ V
8: Sort all tasks v ∈ V in descending order of their distance
to the end task and saved in list Π

9: Step 4: Offloading Tasks
10: for each task v ∈ V do
11: Obtain Pred(v) according to DAG
12: Initialize variables t̄v and f̄v to 0
13: for each edge node m ∈M do
14: Initialize variables R(m) to C(m)
15: while offloading list Π ̸= ∅ do
16: Select the first task v from the list Π
17: Update Mv(R) = Mv

∩
{m |R(m) ≥ rvmtvm; m ∈

M}
18: Compute EFT (v;m) with Eq. (5) for m ∈Mv(R)
19: Offload task v on m with minm∈Mv(R) EFT (v;m)
20: Record the offloaded edge node as mv
21: Update t̄v, f̄v and R(mv) with Eq. (6), Eq. (7) and

Eq. (8), respectively
22: Delete task v from offloading list Π

Definition 2 (Favorite Predecessor [34]): For any task
v ∈ V , if task v′ ∈ Pred(v) satisfies ¯tv′ + ev′ + cav′v > t̄v,
then task v′ is called the favorite predecessor for task v.

We can prove that each task v ∈ V has at most one
favorite successor/predecessor. If it exists, the favorite suc-
cessor/predecessor must be offloaded to the same edge node
as task v. Moreover, if task v′ is the favorite successor
of task v, then task v is the favorite predecessor of task
v′. According to the definition of favorite successor, we
present a favorite successor based algorithm to solve the
special case (FS). Specifically, FS offloads tasks through two
major steps: 1) obtain favorite successor without considering
services and the number of edge nodes constraints. The
results can reflect the dependency priority of the DAG. 2)
favorite successor based offloading while considering the
number of edge nodes and service constraints.

Obtaining Favorite Successor.We first attempt to offload
tasks to edge nodes without considering services and the
number of edge nodes constraints. In this situation, we only
need to consider the dependency constraint and we formulate
this problem as follows:

min T

2001
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

6

s:t:






tv + ev + cavv′yvv′ ≤ tv′ ; ∀ < v; v′ >∈ E∑
v′∈Succ(v) yvv′ ≥ |Succ(v)| − 1; ∀v :< v; v′ >∈ E

∑
v′∈Pred(v) yv′v ≥ |Pred(v)| − 1; ∀v :< v′; v >∈ E

tv + ev ≤ T; ∀v ∈ V
tv ≥ 0; ∀v ∈ V
yvv′ ∈ {0; 1}; ∀ < v; v′ >∈ E

(9)
where binary variable yvv′ denotes whether task v′ is the
favorite successor of task v. Specifically, yvv′ = 0 represents
that task v′ is the favorite successor of task v, otherwise
yvv′ = 1. The first set of inequalities indicates the depen-
dency constraints. Specifically, if yvv′ = 0, then this set of
inequalities turns into tv+ ev ≤ tv′ (i.e., no communication
delay between task v and task v′ if v′ is the favorite
successor of v). Otherwise, it turns into tv+ev+cavv′ ≤ tv′
(i.e., we need consider communication delay between task
v and task v′ if v′ is not the favorite successor of v). The
second and third sets of inequalities indicate that any task
has at most one favorite successor/predecessor. Our objective
is to minimize the makespan, i.e., min T.
To solve this program in polynomial time, we relax the
sixth set of constraints by setting yvv′ ∈ [0; 1]. In this way,
we can obtain the optimal solutions 	yvv′ (∀ < v; v′ >∈ E)
with a linear programming solver such as PuLP [35]. The
second set of inequalities indicates that at most one succes-
sor v′ of task v ∈ V can satisfy 	yvv′ < 0:5. Specifically,
if there exists two successors v′ and v′′ of task v ∈ V
such that 	yvv′ < 0:5 and 	yvv′′ < 0:5, then we have∑
v′∈Succ(v) yvv′ < |Succ(v)|−1, which is contradicts with

the second set of inequalities. Thus, for each < v; v′ >∈ E,
let �yvv′ = 0 if 	yvv′ < 0:5, and let �yvv′ = 1 otherwise. In
this way, we get the integer solutions, that is, the favorite
successor (if exists) for each task.
Favorite Successor based Offloading. In this step, we
leverage the results obtained by the first step to offload
tasks. We first introduce some definitions for the sake of
convenience. We use VR to denote the set of tasks whose
all predecessors have been offloaded, initialized as the set of
tasks without predecessor. Let lm denote the last offloaded
task on edge node m ∈ M and fm denote the favorite
successor of task lm, both initialized as none. We use
Avail(v) = maxv′∈Pred(v)(t̄v′ + ev′ + cav′v) to denote the
available time that task v can be executed on any edge node.
Then we compute the earliest start time EST (v;m) with
Eq. (4) for each task v ∈ VR and edge node m ∈ Mv.
For each edge node m ∈ Mfm , if EST (fm;m) <
T (fm;m) + calmfm , edge node m can execute the fa-
vorite successor fm earlier than other edge nodes. Thus,
we try to reserve edge node m for executing task fm.
For each task v ∈ VR

∩
Succ(lm) and v ̸= fm and

m ∈ Mv (i.e., v is a potential competing successor),
if 1) Avail(v) ≥ EST (fm;m) or 2) there is an edge
node m′ ̸= m such that EST (v;m′) ≤ Avail(v) and if
m′ ∈ Mfm′ and EST (fm′ ;m′) < T (fm′ ;m′) + calm′fm′ ,
v =∈ Succ(lm′) or v = fm′ , we defer the earliest staring

Algorithm 2 FS: Favorite Successor based Algorithm for
Homogeneous Scenario

1: Step 1: Obtaining Favorite Successor
2: Construct a linear program based on Eq. (9)
3: Obtain the optimal solution 	yvv′
4: Derive an integer solution �yvv′ for each < v; v′ >∈ E
5: Record the favorite successor (if exists) for each task
based on the integer solution

6: Step 2: Favorite Successor based Offloading
7: for each task v ∈ V do
8: Obtain Pred(v) and Succ(v) according to DAG
9: Initialize variables t̄v, f̄v and Avail(v) to 0
10: for each edge node m ∈M do
11: Initialize the last offloaded task lm to none
12: Compute the set VR of unoffloaded tasks that all prede-
cessors are offloaded

13: while VR ̸= ∅ do
14: for each task v ∈ VR and edge node m ∈Mv do
15: Compute EST (v;m) with Eq. (4)
16: for each edge node m ∈ M that the last offloaded

task lm have a favorite successor fm ∈ VR do
17: if m ∈ Mfm and EST (fm;m) < T (fm;m) +

calmfm then
18: for each task v ∈ VR

∩
Succ(lm) and v ̸= fm

and m ∈Mv do
19: Avail(v) = maxv′∈Pred(v)(t̄v′ + ev′ + cav′v)
20: if 1) Avail(v) ≥ EST (fm;m) or 2) there

is an edge node m′ ̸= m such that
EST (v;m′) ≤ Avail(v) and if m′ ∈ Mfm′
and EST (fm′ ;m′) < T (fm′ ;m′)+ calm′fm′ ,
v =∈ Succ(lm′) or v = fm′ then

21: Update EST (v;m) = EST (fm;m)+ efm
22: ESTmin = minv∈VR;m∈Mv EST (v;m)
23: Choose one task v′ ∈ VR to offloaded to edge node

m′ ∈Mv′ which satisfying EST (v′;m′) = ESTmin
24: Use mv′ to record the offloaded edge node
25: Update ¯tv′ and f̄v′ with Eq. (6) and Eq. (7), respec-

tively
26: Update the last offloaded task lmv′ = v

′

27: Update the unoffloaded task set VR that all predeces-
sors are offloaded

time of task v on edge node m, that is, EST (v;m) =
EST (fm;m) + efm . Then we choose edge node m

′ with
minv′∈VR;m′∈Mv′ EST (v

′;m′) to offload task v′. After task
v′ is offloaded, we record the actual offloaded edge nodemv′
and update t̄v′ and f̄v′ with Eq. (6) and Eq. (7), respectively.
Besides, we update the last offloaded task lmv′ as task v

′ and
update the unoffloaded ready set VR. We repeat this iteration
until all tasks have been offloaded. The FS algorithm is
formally described in Algorithm 2.

B. Performance Analysis
This section analyzes the approximate performance of FS.
If we do not consider the services and the number of edge
nodes constraints, we can offload tasks satisfying the favorite

2002
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

7

successor requirement. We first give the approximation ratio
for this problem.

Theorem 2: If we do not consider edge node constraints
and offload tasks according to the integer solutions obtained
by Eq.(9), we can finish all tasks in a makespan at most 43
times of the optimal makespan.

Proof: let Two denote the actual makespan and twov
denote the actual start time of task v ∈ V using the integer
solutions to offload. Let T lp denote the makespan obtained
by linear program, which is the lower-bound of the optimal
makespan (denoted as T opt). We denote the weight of link
< v; v′ >∈ E as w < v; v′ >= ev + cavv′yvv′ .

Since we assume the system contains an unlimited num-
ber of edge nodes, we can offload any task once it receives
all data from successors. Thus, Two equals to the longest
path in the DAG. It means:

Two

T lp
≤ max
<v;v′>∈E

(
wwo < v; v′ >

wlp < v; v′ >
)

= max
<v;v′>∈E

(
ev + cavv′�yvv′
ev + cavv′	yvv′

) (10)

If �yvv′ = 0, then ev+cavv′ �yvv′ev+cavv′ �yvv′
≤ 1. Otherwise 	yvv′ ≥ 0:5,

which means:
ev + cavv′�yvv′
ev + cavv′	yvv′

≤ ev + cavv′

ev + 0:5cavv′
≤ 4
3

(11)

The last inequality holds because we assume that ev ≥ cavv′
for this special case. Hence we conclude that:
Two

T opt
≤ T

wo

T lp
≤ max
<v;v′>∈E

(
ev + cavv′�yvv′
ev + cavv′	yvv′

) ≤ 4
3

(12)

We then give some features of the proposed FS algorithm.

Lemma 3: Let l′ = minv∈V (|Mv|) (i.e., for any task, at
least l′ edge nodes are configured with required services)
and l′′ = l − l′. We use T [0; t̄v] to denote the accumulate
idle time on all edge nodes before the actual start time t̄v
of task v. Then we have :

T [0; t̄v] ≤ (l′ − 1)twov + l′′ t̄v

Proof: In the worst case, the other l′′ edge nodes have
not been configured with any service and all tasks require the
support of service(s). Thus, all tasks can only be offloaded
to l′ edge nodes while leaving other l′′ edge nodes idle. That
means, the accumulate idle time on l′′ edge nodes equals to
l′′ t̄v . If we can show at most (l′−1)twov accumulate idle time
on l′ other edge nodes, the proof is finished. This becomes
the identical parallel machines scheduling with dependent
tasks problem [34]. Due to space limit, we omit this proof
here and the reader can see [34] for reference.

Lemma 4: Let T fsl denote the actual makespan by using
the FS algorithm. Then we have:

T [0; T fsl] ≤ (l
′ − 1)Two + l′′T fsl

Proof: Let task v be the last completed task by the FS
algorithm, by applying Lemma 3, we have

T [0; T fsl] = T [0; t̄v] + T [t̄v; T
fs
l]

≤ (l′ − 1)twov + l′′ t̄v + (l − 1)ev
= (l′ − 1)(twov + ev) + l′′(t̄v + ev)
≤ (l′ − 1)Two + l′′T fsl (13)

Now, we give the approximation performance of our
proposed FS algorithm.
Theorem 5: Let T optl to denote the optimal makespan for

offloading on l edge nodes. We have T
fs
l

T optl

≤ l
l′ +

4
3 .

Proof: We know that the accumulate idle time plus the
whole tasks execution time is equal to the total time slices.
By applying Theorem 2 and Lemma 4, we have:
lT fsl = T [0; T

fs
l] +

�
v∈V
ev ≤ (l′ − 1)Two + l′′T fsl

+
�

v∈V
ev ⇒ T fsl ≤

l′ − 1
l′
Two +

∑
v∈V ev

l′
≤

4(l′ − 1)
3l′

T opt +
l

l′
T optl ≤ 4

3
T optl +

l

l′
T optl (14)

The penultimate inequality holds because T optl ≥
∑
v∈V ev
l .

Thus, we conclude that FS can achieve an approximate ratio
of ll′ +

4
3 , where l is the number of edge nodes and l

′ =
minv∈V (|Mv|) (i.e., for any task, at least l′ edge nodes are
configured with required services).

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
algorithms by comparing with state-of-the-art methods over
multiple offloading scenarios and applications using real-
world applications (from [20]) and data traces (from [21]).

A. Performance Metrics and Methodology

Due to space limit, we mainly focus on the comparison of
makespan in this section, which is one of the most important
metrics for the task offloading problem. We compare CP and
FS with the following existing approaches.
• The first one is the Individual Time Allocation with
Greedy Offloading (ITAGS) algorithm [12], which aims
at minimizing the communication and computation
costs while satisfying makespan constraint. Specifical-
ly, ITAGS first uses a binary-relaxed version of the
original problem to allocate a completion deadline for
each individual task, and then greedily optimizes the
offloading of each task subject to its time allowance.
For fair comparison, we modify the objective of ITAGS
to makespan minimization while satisfying processing
resources constraints. In this way, ITGAS can solve the
same problem proposed in this paper.

• The second one is offloading tasks according to the
relaxed solutions of Eq. (1) obtained by using tradi-
tional relaxing and rounding method. More specifically,
we first relax the integer constraints of variables zmv
(∀v ∈ V;m ∈ M) and xvv′(∀v; v′ ∈ V) in Eq. (1)
to be fractional variables and then replace the third

2003
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

8

constraints with Eq. (2). In this way, we can solve this
problem with CPLEX and obtain fractional solutions
	zmv and 	xvv′ . In the end, we use progressive rounding
method to obtain integer solutions and offload each task
according to the integer solution �zmv . That is, we offload
task v on edge node m if �zmv = 1. We use Rounding
to denote this method.

• The last one is the traditional algorithm, denoted as
Greedy. This algorithm picks tasks starting from the top
of the DAG to keep dependency. Then it offloads each
picked task to the edge node with minimum makespan
while satisfying service and resource constraints.

B. Simulation Settings

In this section, we introduce the simulation settings,
including the generation methods of DAGs, task set settings,
and the scenario settings for simulations.
1) DAG Generation: Similar to [12], we use the Gaussian
Elimination (GE) algorithm and the Fast Fourier Transform
(FFT) algorithm [20] to construct DAGs, respectively. Both
generated structures are well known and used in real-
world scenarios. The readers can see [20] for the detailed
descriptions about the GE and FFT algorithms.
2) Task Set Settings: For the task set, similar to [15] [36],
we use the data traces of google clusters [21]. Note that,
these data traces only contain the information of process-
ing time, dependency relationship and required processing
resources for each task. To be more practical, we randomly
generate other required information for our simulations.
Specifically, for the general ODT-SC problem, to emulate
the heterogeneous environment (e.g., the processing delay of
the same job would vary on different edge nodes), we scale
the processing time collected from [21] with a factor with
uniform distribution in (1,10). The ratio between the com-
munication delay and the processing delay is uniformly ran-
domized in (0.1,10). In other words, for each < v; v′ >∈ E,
the communication delay for data transmission from task v
to task v′ is generated through multiply the processing time
for task v with a random number in (0.1,10). Moreover, the
required processing resources tvmrvm is drawn uniformly
in (1,10) for each task v on edge node m. Moreover, for
each task, the percentage of edge nodes that configured with
required services are denoted by Ω. We set Ω as 50% and the
number of edge nodes as 10 by default. We mainly divide the
simulations into three groups and each group of simulations
contains two scenarios, one for the heterogeneous scenario
(i.e., the general ODT-SC problem) and the other for the
homogeneous scenario (i.e., the special case).
3) Simulation Scenario Settings: Actually, the type of
network model (heterogeneous or homogeneous) is known
in advance. Thus we perform the CP algorithm for the
heterogeneous scenario and execute FS for the homogeneous
scenario. The simulations are performed under two scenar-
ios. Basically, the first scenario applies to the heterogeneous
environment, i.e., the general ODT-SC problem. We test the
performance of CP, ITAGS, Rounding and Greedy under this
scenario. The second scenario is applied to the homogeneous

 0

 1

 2

 3

 4

 5

 6

Rank1 Rank2 Rank3 Rank4N
u

m
b

er
 o

f
T

e
st

 C
a
se

s
(

 1
0

 3
)

Rank of Makespans

CP
ITAGS
Rounding
Greedy

(a) for the ODT-SC Problem.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Rank1 Rank2 Rank3 Rank4N
u

m
b

er
 o

f
T

e
st

 C
a
se

s
(

 1
0

 3
)

Rank of Makespans

FS
ITAGS

Rounding
Greedy

(b) for the Heterogeneous Scenario.

Fig. 3: Number of Test Cases vs. Rank of Makespans.

environment, i.e., the special case illustrated in Section IV.
We compare FS with ITAGS, Rounding and Greedy under
this scenario.

C. Simulation Results

We run three sets of simulations on two different DAGs
(i.e., GE and FFT structures) to demonstrate the effective-
ness of our proposed algorithms.
Comparison on the Number of Test Cases in Differ-
ent Rankings: In the first set of simulations, we first
randomly generate 200 DAGs using GE and FFT algo-
rithms with the number of tasks from 5 to 500. For each
DAG, 50 different random settings are generated with
different numbers of edge nodes and different computa-
tion/communication/resources/services requirements for the
general ODT-SC problem. Thus, we generate totally 10,000
random test cases. We evaluate CP, ITAGS, Rounding and
Greedy on these test cases and rank the algorithms according
to their makespan. The results are shown in Fig. 3(a). We
observe that CP produces the minimummakespan in 57.83%
(5,783 out of 10,000) of test cases. By comparison, ITAGS,
Rounding and Greedy are in rank 1 in 2145, 2016 and 56 test
cases, respectively. The results show that CP outperforms
other algorithms on most of the test cases. Similarly, for each
DAG, we generate 50 different random settings that meet
the requirements of the special case. We test FS, ITAGS,
Rounding and Greedy on these 10,000 test cases. As shown
in Fig. 3(b), FS produces the shortest makespan in 70.85%
(7,085 out of 10,000) of test cases and longest makespan
on very little small portion (less than 1%) of the test cases.
By comparison, ITAGS is in rank 2 for most test cases,
Rounding is in rank 3 for most cases and Greedy produces
the longest makespan for most cases. The results indicate
our proposed FS algorithm outperforms other state-of-the-
art solutions on most test cases.
Impact of the Number of Tasks on Makespan: The
second set of simulations investigates the mean makespan by
changing the number of tasks. We execute each simulation
100 times and average the numerical results. The results are
shown in Figs. 4-5. Fig. 4 shows the results for the general
ODT-SC problem with different DAG structures. As the
number of tasks increases, the mean makespan increases for
all algorithms. CP can always achieve lower mean makespan
compared with the other three algorithms. For example,
when there are 400 tasks in the FFT structure, the mean

2004
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

9

 0

 4

 8

 12

 16

 20

0 20 50 100 200 300 400 500

M
ea

n
 M

a
k

es
p

an
 (

 1
0

 3
)

Number of Tasks

Greedy
Rounding
ITGAS
CP

(a) for the GE Structure.

 0

 3

 6

 9

 12

0 20 50 100 200 300 400 500

M
ea

n
 M

a
k

es
p

an
 (

 1
0

 3
)

Number of Tasks

Greedy
Rounding
ITGAS
CP

(b) for the FFT Structure.

Fig. 4: Mean Makespan vs. Number of Tasks for Heteroge-
neous Scenario.

 0

 1

 2

 3

 4

 5

0 20 50 100 200 300 400 500

M
ea

n
 M

a
k

es
p

an
 (

 1
0

 3
)

Number of Tasks

Greedy
Rounding
ITGAS
FS

(a) for the GE Structure.

 0

 1

 2

 3

 4

0 20 50 100 200 300 400 500

M
ea

n
 M

a
k

es
p

an
 (

 1
0

 3
)

Number of Tasks

Greedy
Rounding
ITGAS
FS

(b) for the FFT Structure.

Fig. 5: Mean Makespan vs. Number of Tasks for Homoge-
neous Scenario.

 3

 6

 9

 12

 15

 18

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
 1

0
 3

)

!!! !!!

Greedy
Rounding
ITGAS
CP

(a) for the GE Structure.

 2

 4

 6

 8

 10

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
 1

0
 3

)

!!! !!!

Greedy
Rounding
ITGAS
CP

(b) for the FFT Structure.

Fig. 6: Mean Makespan vs. the Value of Ω for Heteroge-
neous Scenario.

 0

 1

 2

 3

 4

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
 1

0
 3

)

!!! !!!

Greedy
Rounding
ITGAS
FS

(a) for the GE Structure.

 0

 1

 2

 3

 4

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
 1

0
 3

)

!!! !!!

Greedy
Rounding
ITGAS
FS

(b) for the FFT Structure.

Fig. 7: Mean Makespan vs. the Value of Ω for Homogeneous
Scenario.

makespan under CP is 5,783 while 7982, 8345 and 9834
under ITAGS, Rounding and Greedy, respectively. In other
words, CP can decrease mean makespan by about 28%,
31% and 42% compared with ITAGS, Rounding and Greedy,
respectively. Fig. 5 gives the results for the special case with
different DAG structures. We observe that our proposed FS
algorithm always outperforms three benchmarks. Basically,
FS achieves the shortest mean makespan while ITAGS is
in rank 2, Rounding is in rank 3 and Greedy produces the
longest mean makespan. For example, when there are 300
tasks in the GE structure, our proposed FS algorithm can
reduce the mean makespan by about 30%, 38% and 49%
compared with ITAGS, Rounding and Greedy, respectively.
Impact of the Value of Ω on Makespan: The last set of
simulations shows the mean makespan by changing the value
of Ω, i.e., for each task, the percentage of edge nodes that
are configured with required services. The results are shown
in Figs. 6-7, where the horizontal axes are the value of Ω.
As the value of Ω increases, the mean makespan decreases
under all algorithms and CP/FS always achieve lower mean
makespan than other algorithms. Fig. 6 shows the results for
the general ODT-SC problem with different DAG structures.
We observe that CP always achieves the lower makespan
compared with other algorithms. For example, for each
task, if we only install required services on 40% of edge
nodes for the GE structure, CP will achieve mean makespan
of 6368, while ITAGS, Rounding and Greedy can achieve
mean makespans of 10024, 10045 and 13141, respectively.
That means CP reduces the mean makespan by about
36.4%, 36.7% and 51.5% compared with ITAGS, Rounding
and Greedy, respectively. The results for the special case
are shown in Fig. 7. Regardless of the proportion of the
deployed services, FS always achieves lower makespan

compared with other algorithms. For example, when the
value of Ω is 0.2 in Fig. 7(b), FS reduces the mean makespan
by about 27.1%, 36.9% and 44.9% compared with ITAGS,
Rounding and Greedy, respectively.
From these simulation results, we find that CP/FS sub-
stantially outperform other algorithms, over a wide range of
parameters in the number of edge nodes and the value of Ω.
Note that, we also simulate the mean makespan by changing
the communication-to-computation ratio and the number of
edge nodes, the conclusion agrees with the above simulation
results. Due to the limited space, we omit the description of
these simulation results.

VI. CONCLUSION

In this paper, we have studied the problem of offload-
ing dependent tasks with service caching to minimize the
makespan (ODT-SC). We have proved that there exists no
constant approximation algorithm for ODT-SC. A convex
programming based algorithm has been designed to solve
this problem. Moreover, we have studied the special case
for the ODT-SC problem (i.e., homogeneous scenario) and
proposed an approximate algorithm with bounded approxi-
mation factor to solve this practical case. Extensive simula-
tion results have shown the high efficiency of our proposed
algorithms.

VII. ACKNOWLEDGEMENT

This research of Zhao, Xu and Huang is partially support-
ed by the National Science Foundation of China (NSFC) un-
der Grants 61822210, U1709217, and 61936015; by Anhui
Initiative in Quantum Information Technologies under No.
AHY150300. The research of Qiao is supported in part by
National Science Foundation (NSF) Grant CNS-1626374.

2005
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

10

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[2] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 207–215.

[3] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satya-
narayanan, “vtube: efficient streaming of virtual appliances over last-
mile networks,” in Proceedings of the 4th annual Symposium on
Cloud Computing. ACM, 2013, p. 16.

[4] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1468–1476.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[6] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017, pp. 1–9.

[7] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[8] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[9] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling
and transmit power allocation for mobile-edge computing systems,”
in 2017 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2017, pp. 1–6.

[10] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE INFOCOM 2016-The 35th Annu-
al IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

[11] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: A literature survey,” ACM computing surveys (CSUR),
vol. 35, no. 4, pp. 399–458, 2003.

[12] S. Sundar and B. Liang, “Offloading dependent tasks with communi-
cation delay and deadline constraint,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 37–45.

[13] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019, pp.
1279–1287.

[14] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing systems,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations. IEEE, 2019, pp. 514–522.

[15] N. Eshraghi and B. Liang, “Joint offloading decision and resource
allocation with uncertain task computing requirement,” in IEEE
INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1414–1422.

[16] Z. Meng, H. Xu, L. Huang, P. Xi, and S. Yang, “Achieving energy
efficiency through dynamic computing offloading in mobile edge-
clouds,” in 2018 IEEE 15th International Conference on Mobile Ad
Hoc and Sensor Systems (MASS). IEEE, 2018, pp. 175–183.

[17] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” IEEE Transactions on Mobile Computing, vol. 16, no. 11,
pp. 3056–3069, 2017.

[18] Y. Fan, L. Zhai, and H. Wang, “Cost-efficient dependent task offload-
ing for multiusers,” IEEE Access, vol. 7, pp. 115 843–115 856, 2019.

[19] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang, “De-
pendent task placement and scheduling with function configuration
in edge computing,” in Proceedings of the International Symposium
on Quality of Service. ACM, 2019, p. 20.

[20] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for het-
erogeneous systems by an optimistic cost table,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 3, pp. 682–694,
2013.

[21] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing. ACM, 2012, p. 7.

[22] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile
edge computing: Survey and research outlook,” arXiv preprint arX-
iv:1701.01090, 2017.

[23] N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and J. K. Zao, “Fog
as a service technology,” IEEE Communications Magazine, vol. 56,
no. 11, pp. 95–101, 2018.

[24] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of
radio and computational resources for multicell mobile-edge comput-
ing,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 1, no. 2, pp. 89–103, 2015.

[25] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communication-
s, vol. 16, no. 9, pp. 5994–6009, 2017.

[26] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling
salesman problem,” biosystems, vol. 43, no. 2, pp. 73–81, 1997.

[27] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, Tech. Rep., 1976.

[28] I. I. CPLEX, “V12. 1: Users manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[29] Y. Zhao, M. Pithapur, and C. Qiao, “On progressive recovery in
interdependent cyber physical systems,” in 2016 IEEE Global Com-
munications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[30] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[31] T. X. Tran and D. Pompili, “Joint task offloading and resource
allocation for multi-server mobile-edge computing networks,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856–868,
2018.

[32] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[33] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seam-
less application execution in mobile cloud computing: Motivation,
taxonomy, and open challenges,” Journal of Network and Computer
Applications, vol. 52, pp. 154–172, 2015.

[34] C. Hanen and A. Munier, “An approximation algorithm for scheduling
dependent tasks on m processors with small communication delays,”
Discrete Applied Mathematics, vol. 108, no. 3, pp. 239–257, 2001.

[35] S. Mitchell, M. OSullivan, and I. Dunning, “Pulp: a linear program-
ming toolkit for python,” The University of Auckland, Auckland, New
Zealand, 2011.

[36] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 2017, pp. 1–9.

2006
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:34:01 UTC from IEEE Xplore. Restrictions apply.

